- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Korunova, Elizaveta (1)
-
Shtutman, Michael (1)
-
Sikirzhytski, Vitali (1)
-
Twiss, Jeffery L (1)
-
Vasquez, Paula (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Single-particle tracking (SPT) is a powerful technique for probing the diverse physical properties of the cytoplasm. Genetically encoded nanoparticles provide an especially convenient tool for such investigations, as they can be expressed and tracked in cells via fluorescence. Among these, 40-nm genetically encoded multimerics (GEMs) provide a unique opportunity to explore the cytoplasm. Their size corresponds to that of ribosomes and big protein complexes, allowing us to investigate the effects of the cytoplasm on the diffusivity of these objects while excluding the influence of chemical interactions during stressful events and pathological conditions. However, the effects of GEM expression levels on the measured cytoplasmic diffusivity remain largely uncharacterized in mammalian cells. To optimize the GEMs tracking and assess expression level effects, we developed a doxycycline-inducible GEM expression system and compared it with a previously reported constitutive expression system. The inducible GEM expression system reduced the number of GEM particles from 2000 to as low as 5–500 per average 2D cell cytoplasmic area, depending on doxycycline concentration and incubation time. This optimization enabled adjustment of particle density for imaging and improved homogeneity across the cell population. Moreover, we enhanced the analysis of GEM diffusivity by incorporating an effective diffusion coefficient that accounts for the type of motion and by quantifying motion heterogeneity through standard deviations of particle displacements within and between cells.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
